Given
f(x)=2x4−3x3−3x2+6x−2
Two zeros of polynomial f(x) are √2 and −√2
(x−√2)(x+√2)=x2−2, will be a factor of f(x)
Dividing polynomial f(x) by x2−2
2x2−3x+1x2−2)¯¯¯¯¯¯¯¯¯¯¯¯¯¯¯¯¯¯¯¯¯¯¯¯¯¯¯¯¯¯¯¯¯¯¯¯¯¯¯¯¯¯¯¯¯¯¯¯¯¯¯¯¯¯¯¯¯¯¯2x4−3x3−3x2+6x−22x4−4x2−+_______________________−3x3+x2+6x−2−3x3+6x+−___________________x2−2x2−2−+___________________________0
f(x)=(x2−2)(2x2−3x+1)
=(x2−2)(2x2−2x−x+1)
=(x2−2)[2x(x−1)−1(x−1)]
=(x2−2)(x−1)(2x−1)
To find zero of polynomial, f(x)=0
∴(x2−2)(x−1)(2x−1)=0
when x2−2=0 then x=±√2
If x−1=0 then x=1
and 2x−1=0 then x=12
∴ all the zeros of polynomial f(x) are
√2,−√2,1 and 12
√2,−√2,1 and 12
Thus other two zero are 1and 12.