We have,
U={1,2,3,4}
A={2,3}
B={0,3}
L.H.S
(A∪B)′=U−(A∪B)
(A∪B)′={1,2,3,4}−({2,3}∪{0,3})
(A∪B)′={1,2,3,4}−{0,2,3}
(A∪B)′={1,4}
R.H.S
A′∩B′=(U−A)∩(U−B)
A′∩B′=({1,2,3,4}−{2,3})∩({1,2,3,4}−{0,3})
A′∩B′={1,4}∩{1,2,4}
A′∩B′={1,4}
Hence, proved.