Here, u1=p1q1,u2=p2q2,u3=p3q3,.....
Where, pn=qn−1 and qn=qn−1+pn−1
qn=qn−1+qn−2
Hence,, q1+q2x+q3x2+.... is a recurring series in which the scale of relation is 1−x−x2
q1=b,q2=a+b
q1+q2x+q3x2+....=q1+(q2−q1)x1−x−x2
=b+ax1−x−x2
Let b+ax1−x−x2=A1−αx+B1−βx;
Then qn=Aαn−1+Bβn−1;pn=qn−1=Aαn−2+Bβn−2
∴pnqn=Aαn−2+Bβn−2Aαn−1+Bβn−1
Now, α and β are to be found from the equations α+β=1,αβ=−1,
Let α be the greater of the quantities; then α=1+√52;β=1−√52
So that α>1,β<1; hence the limit when n is infinite of αn is infinity and βn is 0.
pnqn=Aαn−2Aαn−1=1α=21+√5 =√5−12