If u=cos(x2+y2) then x∂u∂x+y∂u∂y=
cos−1u=x2+y2 −1√1−u2dudx=2x −1√1−u2dudy=2y xdudx+ydudy=−2(x2+y2)√1−u2 =−2(cos−1u)(√1−u2)