cos u=x+y√x+√y −sin u∂u∂x=√x+√y−(x+y)(12√x)(√x+√y)2 −sin u∂u∂y=(√x+√y−(12)(x+y)1√y)(√x+√y)2 −sin u(x∂u∂x+y∂u∂y)=(√x+√y)(n+y)−12(√x+√y)(x+y)(√x+√y)2 =12(x+y)√x+√y x∂u∂x+y∂u∂y=−12cot u