If u=cos−1(x−y√1+x2√1+y2) then∂2u∂x2−∂2u∂y2=
The correct option is
C
2y(1+x2)2+2x(1+y2)2[(1+x2)(1+y2)]2
Given : u=cos−1(x−y√1+x2√1+y2)
Apply the chain rule w.r.t 'x' potentially
∂u∂x=−11−(x−y√1+x2√1+y2)∂∂x(x−y√1+x2√1+y2)
=−11−(x−y√1+x2√1+y2)×1√1+y2∂∂x(x−y√1+x2)
−xy+1√(xy+1)2(1+x2)=−(xy+1)(xy+1)(1+x2)=−11+x2
Differentiate w.r.t 'x' partially again
∂2y∂x2=2x(1+x2)→(1)
Apply the chain rule differentiate w.r.t 'y' partially
∂u∂y=−11−(x−y√1+x2√1+y2)×∂∂y(x−y√1+x2√1+y2)
=−11−(x−y√1+x2√1+y2)×1√1+x2∂∂y(x−y√1+y2)
=−−xy−1√(xy+1)2√1+y2
=−−(xy+1)(xy+1)(1+y2)
∂u∂y=+1(1+y2)
Differentiate w.r.t 'y' partially again
∂2u∂y2=−2y(1+y2)2
∂2u∂x2−∂2u∂y2=2x(1+x2)2−2y(1+y2)2
=2x(1+x2)2+2y(1+y2)2
∂2u∂x2−∂2u∂y2=2x(1+y2)2+2y(1+x2)2(1+x2)2(1+y2)2