If u=3√y−3√xx+y then x∂u∂x+y∂u∂y=?
u is a homogeneous eqn of degree n=−23
∑x∂u∂x=nu
⇒∑x∂u∂x=−23u
Alternate method
∂u∂x=−13x−2/3(x+y)−((y)1/3−x1/3)(x+y)2
x∂u∂x=−13x1/3(x+y)−x(y1/3−x1/3)(x+y)2
y∂u∂y=13y1/3(x+y)−y(y1/3−x1/3)(x+y)2
∴∑x∂u∂x=13(y1/3−x1/3)(x+y)−(x+y)(y1/3−x1/3)(x+y)2
=(13−1)u=−23u