If u=x−y√x2+y2, then x∂u∂x+y∂u∂y=
u is homogeneous
equation of degree n=0.
∑xdudx=nu
∑xdudx=0
Alternate solution,
dudx=√x2+y2−(n−y)(x2+y2)x√x2+y2
xdudx=x√x2+y2−(x−y)x2√x2+y2x2+y2
ydudy=−y√x2+y2−(x−y)y2√x2+y2x2+y2
∑xdudx=(x−y)√x2+y2−(x−y)√x2+y2x2+y2
=0