The correct option is
A 2The given information is: u=log(x4+y4x2+y2)
Taking partial differentiation w.r.t. to x and y one at a time we get,
⇒∂u∂x=x2+y2x4+y4.4x3(x2+y2)−2x(x4+y4)(x2+y2)2
⇒∂u∂x=4x5+4x3y2−2x5−2xy4(x4+y4)(x2+y2)
⇒∂u∂y=x2+y2x4+y4.4y3(x2+y2)−2y(x4+y4)(x2+y2)2
⇒∂u∂y=4y5+4x2y3−2y5−2x4y(x4+y4)(x2+y2)
Now we make calculation as follows,
⇒x∂u∂x=4x6+4x4y2−2x6−2x2y4(x4+y4)(x2+y2)
⇒y∂u∂y=4y6+4x2y4−2y6−2x4y2(x4+y4)(x2+y2)
⇒x∂u∂x+y∂u∂y=4x6+4x4y2−2x6−2x2y4(x4+y4)(x2+y2)+4y6+4x2y4−2y6−2x4y2(x4+y4)(x2+y2)
⇒x∂u∂x+y∂u∂y=2x6+2x4y2+2y6+2x2y4(x4+y4)(x2+y2)
⇒x∂u∂x+y∂u∂y=2(x2+y2)(x4+y4)(x2+y2)(x4+y4)