eu=x3+y3x−y
eududx=3x2(x−y)−(x3+y3)(x−y)2=2x3−3yx2−y3(x−y)2
eududy=3y2(x−y)−(x3+y3)(x−y)2=3y2x−2y3−x3(x−y)2
eu(xdudx+ydudy)=2x4−3yx3−xy3(x−y)2+3y3x−2y4+x3y(x−y)2
eu(xdudx+ydudy)=2x4−2yx3+2y3x−2y4(x−y)2
=2x3(x−y)+2y3(x−y)(x−y)2=2(x3+y3)x−y
eu(xdudx+ydudy)=2eu
Thus, (xdudx+ydudy)=2