wiz-icon
MyQuestionIcon
MyQuestionIcon
1
You visited us 1 times! Enjoying our articles? Unlock Full Access!
Question

If u=sinπ(x2+y2+zx)122(x2+xy+2yz+z2)13, then the value of xux+yuy+zuz for x=0;y=1;z=2 is

A
π2112
No worries! We‘ve got your back. Try BYJU‘S free classes today!
B
π122
Right on! Give the BNAT exam to get a 100% scholarship for BYJUS courses
C
π12
No worries! We‘ve got your back. Try BYJU‘S free classes today!
D
π2
No worries! We‘ve got your back. Try BYJU‘S free classes today!
Open in App
Solution

The correct option is A π122
Given u=sin⎜ ⎜ ⎜π2(x2+y2+2x)12(x2+xy+2yz+z2)13⎟ ⎟ ⎟
let v=(x2+y2+2x)1/2(x2+xy+2yz+z2)13
(x2+xy+2yz+z2)13v=(x2+y2+2x)12
(x2+xy+2yz+z2)2v6=(x2+y2+2x)3
Partially differentiate on both side w.r.t x,y,z
2(x2+xy+2yz+z2)v6(2x+y)+6(2x2+xy+2yz+z2)2v5vx=3(x2+y2+xz)2(2x+z)(1)
2(x2+xy+2yz+z2)v6(x+2z)+6(2x2+xy+2yz+z2)2v5vy=3(x2+y2+xz)2(2y)(2)
2(x2+xy+2yz+z2)v6(2y+2z)+6(2x2+xy+2yz+z2)2v5vz=3(x2+y2+xz)2(x)(3)
(1)×x+(2)×y+(3)×z
2(x2+xy+2yz+z2)v62(x2+xy+xy+2zy+2yz+2z2)+6(2x2+xy+2yz+z2)2v5(xvx+yvy+zvz)
=3(x2+y2+xz)2(2x2+xz+2y2+zx)
4(x2+xy+2yz+z2)2v6+6(x2+xy+2yz+z2)2v5(xvx+yvy+zvz)=6(x2+y2+xz)3
6(x2+xy+2yz+z2)2v5(xvx+yvy+zvz)=2(x2+xy+2yz+z2)2v6
xvx+yvy+zvz=v3
u=sin(π2v)
ux=π2cos(π2v)vx
uy=π2cos(π2v)vy
uz=π2cos(π2v)vz
xux+yuy+zuz=π2cos(π2v)[xvx+yvy+zvz]
=π6vcos(π2v)
Forx=0,y=1,z=2
v=(x2+y2+zx)12(x2+xy+2yz+z2)13
=(0+1+0)12(0+0+4+4)13=12
Forx=0,y=1,z=2
xux+yuy+zuz=π122


flag
Suggest Corrections
thumbs-up
0
Join BYJU'S Learning Program
similar_icon
Related Videos
thumbnail
lock
Property 4
MATHEMATICS
Watch in App
Join BYJU'S Learning Program
CrossIcon