a3+b3=(a+b)(a2−ab+b2) tanu=(x2)3+(y2)3x2+y2 =(x2+y2)(x4−x2y2+y4)(x2+y2) tanu=x4−x2y2+y4 sec2ududx=4x3−2xy2 sec2ududy=4y3−2x2y sec2u(xdudx+ydudy)=4x4−2x2y2+4y4−2x2y2 =4(x4+y4−x2y2) xdudx+ydudy=4tanucos2u =2sin2u