wiz-icon
MyQuestionIcon
MyQuestionIcon
1
You visited us 1 times! Enjoying our articles? Unlock Full Access!
Question

If u=logtanπ4+x2, then coshu=


A

secx

Right on! Give the BNAT exam to get a 100% scholarship for BYJUS courses
B

cosecx

No worries! We‘ve got your back. Try BYJU‘S free classes today!
C

tanx

No worries! We‘ve got your back. Try BYJU‘S free classes today!
D

sinx

No worries! We‘ve got your back. Try BYJU‘S free classes today!
Open in App
Solution

The correct option is A

secx


Explanation for the correct answer:

u=logtanπ4+x2

Since no base of logarithm is given we consider natural logarithm

u=loge1+tanx21-tanx2 ...[tanA+B=tanA+tanB1-tanAtanB,tanπ4=1]

Taking exponential on both sides we get

eu=elog1+tanx21-tanx2

eu=1+tanx21-tanx2loge ...[alogb=bloga,logee=1]

eu=1+tanx21-tanx2 ...(i)

e-u=1-tanx21+tanx2 ...(ii)

Hyperbolic cosine can be written as

coshu=eu+e-u2

Substituting the values from we get

coshu=1+tanx21-tanx2+1-tanx21+tanx22

2coshu=1+tanx21-tanx2+1-tanx21+tanx2

2coshu=1+tanx22+1-tanx221+tanx21-tanx2

2coshu=21+tan2x21-tan2x2

coshu=sin2x2+cos2x2cos2x2cos2x2-sin2x2cos2x2 ...[tanx2=sinx2cosx2]

coshu=12cos2x2-1 ...[sin2x2+cos2x2=1]

coshu=1cosx ...[cosx=2cos2x2-1]

coshu=secx

Hence the value of coshu is secx for the given value of u,

Hence, option(A) is the correct answer


flag
Suggest Corrections
thumbs-up
10
Join BYJU'S Learning Program
similar_icon
Related Videos
thumbnail
lock
Logarithmic Differentiation
MATHEMATICS
Watch in App
Join BYJU'S Learning Program
CrossIcon