If u=log(x3+y3+z3−3xyz) and (∂∂x+∂∂y+∂∂z)2u=−k(x+y+z)2
Given:
u=log(x3+y3+z3−3xyz)
⇒∂u∂x=∂(log(x3+y3+z3−3xyz))∂x
Here, recall that,
ddx(logx)=1x,x>0
ddx(xn)=nxn−1
ddx(constant)=0
⇒∂u∂x=1log(x3+y3+z3−3xyz)(3x2+0+0−3yz)
⇒∂u∂x=3x2−3yzlog(x3+y3+z3−3xyz) ---(1)
Similarly,
⇒∂u∂y=3y2−3xzlog(x3+y3+z3−3xyz)---(2)
⇒∂u∂z=3z2−3xylog(x3+y3+z3−3xyz)---(3)
Now,
∂u∂x+∂u∂y+∂u∂z=3x2−3yz+3y2−3xz+3z2−3xyx3+y3+z3−3xyz
=3(x2+y2+z2−xy+yz+xz)x3+y3+z3−3xyz
=3(x2+y2+z2−xy+yz+xz)(x+y+z)(x2+y2+z2−xy+yz+xz)
[∵x3+y3+z3−3xyz=(x+y+z)(x2+y2+z2−xy+yz+xz)]
⇒∂udx+∂udy+∂udz=3(x+y+z)
⇒(∂dx+∂dy+∂dz)u=3(x+y+z)
⇒(∂dx+∂dy+∂dz)(∂udx+∂udy+∂udz)=(∂∂x+∂∂y+∂∂z)2u
⇒−3(x+y+z)2+−3(x+y+z)2+−3(x+y+z)2=(∂∂x+∂∂y+∂∂z)2u
⇒−9(x+y+z)2=(∂∂x+∂∂y+∂∂z)2u ---(4)
It is given that,
−k(x+y+z)2=(∂∂x+∂∂y+∂∂z)2u
⇒k=9 |
Hence, Option C is correct.