aun+1+2bun+cun−1=√ax2+2bx+cxn+k1n+k1−aun+k3n+k2−bun+k4n+k2 ⋯(i)
Taking L.H.S.
aun+1+2bun+cun−1=∫axn+1+2bxn+cxn−1√ax2+2bx+cdx
=∫xn−1(ax2+2bx+c)√ax2+2bx+cdx
=∫xn−1√ax2+2bx+cdx
Let vn=∫xn−1√ax2+2bx+cdx
=√ax2+2bx+cxnn−1n∫xn(ax+b)√ax2+2bx+cdx
=√ax2+2bx+cxnn−an∫xn+1√ax2+2bx+cdx−bn∫xn√ax2+2bx+cdx
⇒vn=√ax2+2bx+cxnn−aun+1n−bunn
⇒aun+1+2bun+cun−1=√ax2+2bx+cxnn−aun+1n−bunn
On comparing with equation (i)
k1=0,k2=0,k3=1,k4=0