wiz-icon
MyQuestionIcon
MyQuestionIcon
1
You visited us 1 times! Enjoying our articles? Unlock Full Access!
Question

If un=10xntan1xdx then find (n+1)un+(n1)un2

Open in App
Solution

un=10xntan1xdx
un=tan1x10xn10dtan1xdx(xndx)dx
un=tan1x[xn+1n+1]1010dtan1xdx(xn+1n+1)dx
(n+1)un=tan1x(xn+1)10dtan1xdx(xn+1)dx
So,
(n1)un2=tan1x(xn1)10dtan1xdx(xn1)dx
(n+1)un+(n1)un2=tan1x(xn+1)]1010dtan1xdx(xn+1)dx+tan1x(xn1)]1010dtan1xdx(xn1)dx
π4(1n+1)10dtan1xdx[(xn+1)+(xn1)dx]+π4(1n1)
π21011+x2xn1(1+x2)dx
π210xn1dx
π2xnn|10
π21n


flag
Suggest Corrections
thumbs-up
0
Join BYJU'S Learning Program
similar_icon
Related Videos
thumbnail
lock
Ozone Layer
MATHEMATICS
Watch in App
Join BYJU'S Learning Program
CrossIcon