1
You visited us
1
times! Enjoying our articles?
Unlock Full Access!
Byju's Answer
Standard XII
Mathematics
Definition of Limit
If un=∫01xn...
Question
If
u
n
=
∫
1
0
x
n
tan
−
1
x
d
x
then find
(
n
+
1
)
u
n
+
(
n
−
1
)
u
n
−
2
Open in App
Solution
u
n
=
∫
1
0
x
n
tan
−
1
x
d
x
u
n
=
t
a
n
−
1
x
∫
1
0
x
n
−
∫
1
0
d
t
a
n
−
1
x
d
x
(
∫
x
n
d
x
)
d
x
u
n
=
t
a
n
−
1
x
[
x
n
+
1
n
+
1
]
1
0
−
∫
1
0
d
t
a
n
−
1
x
d
x
(
x
n
+
1
n
+
1
)
d
x
(
n
+
1
)
u
n
=
t
a
n
−
1
x
(
x
n
+
1
)
−
∫
1
0
d
t
a
n
−
1
x
d
x
(
x
n
+
1
)
d
x
So,
(
n
−
1
)
u
n
−
2
=
t
a
n
−
1
x
(
x
n
−
1
)
−
∫
1
0
d
t
a
n
−
1
x
d
x
(
x
n
−
1
)
d
x
(
n
+
1
)
u
n
+
(
n
−
1
)
u
n
−
2
=
t
a
n
−
1
x
(
x
n
+
1
)
]
1
0
−
∫
1
0
d
t
a
n
−
1
x
d
x
(
x
n
+
1
)
d
x
+
t
a
n
−
1
x
(
x
n
−
1
)
]
1
0
−
∫
1
0
d
t
a
n
−
1
x
d
x
(
x
n
−
1
)
d
x
⇒
π
4
(
1
n
+
1
)
−
∫
1
0
d
t
a
n
−
1
x
d
x
[
(
x
n
+
1
)
+
(
x
n
−
1
)
d
x
]
+
π
4
(
1
n
−
1
)
⇒
π
2
−
∫
1
0
1
1
+
x
2
x
n
−
1
(
1
+
x
2
)
d
x
⇒
π
2
−
∫
1
0
x
n
−
1
d
x
⇒
π
2
−
x
n
n
|
1
0
⇒
π
2
−
1
n
Suggest Corrections
0
Similar questions
Q.
Let
I
n
=
1
∫
0
x
n
tan
−
1
x
d
x
.
If
a
n
I
n
+
2
+
b
n
I
n
=
c
n
for all
n
≥
1
, then
Q.
I
n
=
∫
1
0
x
n
tan
−
1
x
d
x
.
If
a
n
I
n
+
2
+
b
n
I
n
=
c
n
∀
n
ϵ
N
,
n
≥
1
then
Q.
The unit sample response of a LTI system and the output of the system is y(n) when unit step u(n) is applied at the input. The value of
lim
n
→
∞
y
(
n
)
i
s
h
(
n
)
=
3
(
1
2
)
n
u
(
n
)
−
2
(
1
3
)
n
−
1
u
(
n
)
Q.
I
n
=
∫
1
0
x
n
tan
−
1
x
d
x
.
If
a
n
I
n
+
2
+
b
n
I
n
=
c
n
∀
n
ϵ
N
,
n
≥
1
then
Q.
If
U
n
=
⎛
⎜
⎝
n
1
5
n
2
2
N
+
1
2
N
+
1
n
3
3
N
2
3
N
∣
∣ ∣ ∣
∣
,
then
N
∑
U
n
=
n
=
1
.