If Un=∫xn√ax2+2bx+cdx, then (n+1)aun+1+(2n+1)bun+ncun−1 is equal to :
A
xn−1√ax2+2bx+c
No worries! We‘ve got your back. Try BYJU‘S free classes today!
B
xn−2√ax2+2bx+c
No worries! We‘ve got your back. Try BYJU‘S free classes today!
C
xn√ax2+2bx+c
No worries! We‘ve got your back. Try BYJU‘S free classes today!
D
xn√ax2+2bx+c
Right on! Give the BNAT exam to get a 100% scholarship for BYJUS courses
Open in App
Solution
The correct option is Dxn√ax2+2bx+c Un−1=∫xn−1√ax2+2bx+cdx =12a∫xn(2ax+2b)−2bxn√ax2+2bx+cdx =12a∫xn(2ax+2b)√ax2+2bx+cdx−baUn =In−baUn , where ....(i) In=12a∫xn(2ax+2b)√ax2+2bx+cdx =12a∫xn(2ax+2b)ax2+2bx+cdx =12axn2√ax2+2bx+c −∫nxn−12√ax2+2bx+cdx =xna√ax2+2bx+cdx .... (ii) from (i) and (ii) be get (n+1)aun+1+(2n+1)bun+ncun−1=xn√ax2+2bx+c