If Un=(1+1n2)(1+22n2)2…(1+n2n2)n, then limn→∞(Un)−4n2 is equal to
A
4e2
No worries! We‘ve got your back. Try BYJU‘S free classes today!
B
4e
No worries! We‘ve got your back. Try BYJU‘S free classes today!
C
16e2
No worries! We‘ve got your back. Try BYJU‘S free classes today!
D
e216
Right on! Give the BNAT exam to get a 100% scholarship for BYJUS courses
Open in App
Solution
The correct option is De216 Given:Un=(1+1n2)(1+22n2)2…(1+n2n2)n
Let L=limn→∞(Un)−4n2
Taking ln on both sides, we get lnL=limn→∞−4n2(ln(1+1n2)+2ln(1+22n2)+3ln(1+32n2)+…+nln(1+n2n2)) ⇒lnL=−4limn→∞1nn∑r=1rnln(1+(rn)2) ⇒lnL=−41∫0xln(1+x2)dx ⇒lnL=−21∫02xln(1+x2)dx
Put 1+x2=t⇒2xdx=dt ⇒lnL=−22∫1(lnt)dt ⇒lnL=−2[tlnt−t]21 ⇒lnL=−2(2ln2−1) ⇒lnL=2(lne−ln4)=ln(e216) ∴L=e216