Ifu=sin-1xy+tan-1yx, then the value ofx∂u∂x+y∂u∂y is
0
1
2
none of these
Explanation for the correct answer:
Find the value of x∂u∂x+y∂u∂y:
Given,
u=sin-1xy+tan-1yx=sin-11yx+tan-1yx=x0fyx
Here, u is a homogeneous function of the degree 0.
Here,n=0
So, by Euler’s theorem,
x∂u∂x+y∂u∂y=nu
x∂u∂x+y∂u∂y=0
Hence, the correct option is A.
If u=log(x3+y3+z3-3xyz), then (∂u/∂x+∂u/∂y+∂u/∂z)(x+y+z)=