wiz-icon
MyQuestionIcon
MyQuestionIcon
1
You visited us 1 times! Enjoying our articles? Unlock Full Access!
Question

If u=a2cos2θ+b2sin2θ+ a2sin2θ+b2cos2θ, then the difference between the maximum and minimum values of u2 is given by

A
2(a2+b2)
No worries! We‘ve got your back. Try BYJU‘S free classes today!
B
2a2+b2
No worries! We‘ve got your back. Try BYJU‘S free classes today!
C
(a+b)2
No worries! We‘ve got your back. Try BYJU‘S free classes today!
D
(ab)2
Right on! Give the BNAT exam to get a 100% scholarship for BYJUS courses
Open in App
Solution

The correct option is D (ab)2

Given u=a2cos2θ+b2sin2θ+a2sin2θ+b2cos2θ

u2=(a2+b2)cos2θ+(a2+b2)sin2θ+2a2cos2θ+b2sin2θa2sin2θ+b2cos2θ

u2=a2+b2+2a4cos2θsin2θ+b4cos2θsin2θ+a2b2(cos4θ+sin4θ)

=a2+b2+2(a4+b4)cos2θsin2θ+a2b2(12cos2θsin2θ)

u2=a2+b2+2a4+b44(sin2θ)2+a2b2(1sin22θ2)

u2=a2+b2+2(a2b2)24(sin2θ)2+a2b2

For max. value of u2, sin22θ=1

u2=a2+b2+2(a2+b2)22=2(a2+b2)

And for min. u2,sin2θ=0

u2=a2+b2+2ab=(a+b)2

Difference between max. and min. value of u2 is 2(a2+b2)(a+b)2=(ab)2.


flag
Suggest Corrections
thumbs-up
1
Join BYJU'S Learning Program
similar_icon
Related Videos
thumbnail
lock
Definition of Function
MATHEMATICS
Watch in App
Join BYJU'S Learning Program
CrossIcon