If u=√a2cos2θ+b2sin2θ+ √a2sin2θ+b2cos2θ, then the difference between the maximum and minimum values of u2 is given by
Given u=√a2cos2θ+b2sin2θ+√a2sin2θ+b2cos2θ
∴u2=(a2+b2)cos2θ+(a2+b2)sin2θ+2√a2cos2θ+b2sin2θ√a2sin2θ+b2cos2θ
u2=a2+b2+2√a4cos2θsin2θ+b4cos2θsin2θ+a2b2(cos4θ+sin4θ)
=a2+b2+2√(a4+b4)cos2θsin2θ+a2b2(1−2cos2θsin2θ)
u2=a2+b2+2√a4+b44(sin2θ)2+a2b2(1−sin22θ2)
u2=a2+b2+2√(a2−b2)24(sin2θ)2+a2b2
For max. value of u2, sin22θ=1
u2=a2+b2+2√(a2+b2)22=2(a2+b2)
And for min. u2,sin2θ=0
u2=a2+b2+2ab=(a+b)2∴ Difference between max. and min. value of u2 is 2(a2+b2)−(a+b)2=(a−b)2.