If u=tan(tan−1x+tan−1y)
u=x+y1−xyuse(tan(A+B)=tanA+tanB1−tanAtanB) dudx=(1−xy)+(x+y)y(1−xy)2=1+y2(1−xy)2 dudy=(1−xy)+(x+y)(−x)(1−xy)2=1+y2(1−xy)2 dudx−dudy=y2−x2(1−xy)2