No worries! We‘ve got your back. Try BYJU‘S free classes today!
B
Re(z)=0
Right on! Give the BNAT exam to get a 100% scholarship for BYJUS courses
C
Im(z)=0
No worries! We‘ve got your back. Try BYJU‘S free classes today!
D
Re(z)=Im(z)
No worries! We‘ve got your back. Try BYJU‘S free classes today!
Open in App
Solution
The correct option is BRe(z)=0 Given that |u|=|v|=1 Let u=cosA+isinA and u=cosA+isinAv=cosB+isinB z=u−v1+uv ⇒z=cosA+isinA−cosB−isinB1+(cosA+isinA)(cosB+isinB) ⇒z=cosA−cosB+i(sinA−sinB)1+cos(A+B)+isin(A+B) ⇒z=−2sin(A+B2)sin(A−B2)+2cos(A+B2)isin(A−B2)2cos2(A+B2)+2isin(A+B2)cos(A+B2) ⇒z=isin(A−B2)cos(A+B2)⎡⎢
⎢
⎢
⎢⎣isin(A+B2)+cos(A+B2)cos(A+B2)+isin(A+B2)⎤⎥
⎥
⎥
⎥⎦ ⇒z=isin(A−B2)cos(A+B2) Therefore, Re(z)=0 Ans: B