If u,v and w are the three non-coplanar vectors, then u+v–w∙u–v×v–w is equal to
u∙w×u
u∙v×w
0
3u∙v×w
Explanation for the correct option:
Finding the value of the expression:
u+v–w∙(u–v)×(v–w)=(u+v–w)∙(u×v–u×w–v×v+v×w)=u.(u×v)–u.(u×w)+u.(v×w)+v.(u×v)–v.(u×w)+v.(v×w)–w.(u×v)+w.(u×v)–w.(v×w)=u.v×w–v.u×w–w.u×v=u.v×w+w.u×v–w.u×v=u.v×w
Hence, the correct option is B.
If u,v,w are non - coplanar vectors and p, q are real numbers, then the equality 3upvpw–pvwqu–2wqvqu=0 holds for?