The ordinate of any point on the curve is given by y=x3(x−4)2
dy dx=3x2(x−4)2−2x3(x−4)3=x2(x−12)(x−4)3
dy dx=0⇒x=0 or x=12
and d2ydx2=(x−4)3(3x2−24x)−3(x−4)2(x3−12x2)(x−4)6=96x(x−4)4
Clearly, d2ydx2∣∣∣x=0=0
and d2ydx2∣∣∣x=12>0
Hence y is minimum at x=12 and its value is
y=(12)3(8)2=27
Thus (u,v)=(12,27)
Hence uv=324