Given that →a.→b=→a.→c=0 which implies, →a is perpendicular to both →b and →c (since these three vectors are unit vectors). That is, →a||→b×→c⇒→aλ(→b×→c)
∴|→a|=|λ||→b×→c|=|λ||→b||→c|sinπ6 ⇒1=|λ|×1×1×12 ∴λ=±2Therefore,→a=±2(→b×→c).Hence (i) is proved.
Also, [→a+→b →b+→c →c+→a]={(→a+→b)×(→b+→c)}.(→c+→a)={→a×→b+→a×→c+→b×→b+→b×→c}.(→c×→a)⇒={→a×→b+→a×→c+→0+→b×→c}.(→c×→a)={→a×→b.→c+→a×→c.→c+→b×→c.→c+→a×→b.→a+→a×→c.→a+→b×→c.→a}⇒[→a→b→c]+0+0+0+0+[→b→c→a]=2[→a→b→c]=2{→a.(→b×→c)}⇒=[→a→b→c]+0+0+0+0+[→b→c→a]=2[→a→b→c]⇒=2{→a.(±12→a)}=±1|→a|2=±1.
Hence (ii) is proved.