The correct option is
A a=6limx→0{asinx−bx+cx2+x32x2log(1+x)−2x3+x4}
this is 00 form so applying L-hospital rule, we get
limx→0⎧⎪
⎪
⎪⎨⎪
⎪
⎪⎩acosx−b+2cx+3x22x21+x+4xlog(1+x)−6x2+4x3⎫⎪
⎪
⎪⎬⎪
⎪
⎪⎭
this is also 00 form so applying L-hospital rule, we get
limx→0⎧⎪
⎪
⎪
⎪
⎪⎨⎪
⎪
⎪
⎪
⎪⎩−asinx+2c+6x2∗2x(1+x)−2x2(1)(1+x)2+4x(1+x)+4log(1+x)−12x+12x2⎫⎪
⎪
⎪
⎪
⎪⎬⎪
⎪
⎪
⎪
⎪⎭
this is again 00 form so applying L-hospital rule, we get
limx→0⎧⎪
⎪
⎪
⎪
⎪
⎪⎨⎪
⎪
⎪
⎪
⎪
⎪⎩−acosx+6ddx(2∗2x(1+x)−2x2(1+x)2+4x(1+x)+4log(1+x)−12x+12x2)⎫⎪
⎪
⎪
⎪
⎪
⎪⎬⎪
⎪
⎪
⎪
⎪
⎪⎭
putting x=0, we get
=a−612
now the value of a can be founded by equation the above equation equal to 0 i.e,
=a−612=0
=a−6=0
⇒a=6.
Hence, option (a) is correct.