The correct option is A 2,2
L=limx→0axex−blog(1+x)x2
Applying L'Hospital rule,
L=limx→0aex+axex−b1+x2x
For the limit to exist at x=0, we should have
a+0−b=0⇒a=b
Applying L'Hospital rule again, we get
L=limx→0⎛⎜
⎜
⎜
⎜⎝aex(x+1)+aex+b(1+x)22⎞⎟
⎟
⎟
⎟⎠
=2a+b2
=2a+a2
=3a2
From the question,
3=3a2
⇒a=2