wiz-icon
MyQuestionIcon
MyQuestionIcon
1
You visited us 1 times! Enjoying our articles? Unlock Full Access!
Question

If limx0ex2e3xsin(x22)sinx = k, (where K ϵ N), find k

Open in App
Solution

limx0ex2e3x2cos⎜ ⎜ ⎜x22+x2⎟ ⎟ ⎟sin⎜ ⎜ ⎜x22x2⎟ ⎟ ⎟
=limx0ex2e3x2cos(x24+x2)sin(x24x2)
As limθ0sinθθ=1
limθ0sinθ=θ
L=limx0ex2e3x2(1)(x24x2)
L=limx0(ex21)(e3x1)x22x
Expansion of ey:-
ey=1+y1!+y22!+y33!
L=limx0(x21!+x42!+.....)(3x1!+9x22!+...)x(x21)
L=limx0(x1!+x32!+....)(31!+9x2!+...)x21
L=31=3=R.

1165373_1245364_ans_e870bc82dcf64157a252c367f407c8fb.jpg

flag
Suggest Corrections
thumbs-up
0
Join BYJU'S Learning Program
similar_icon
Related Videos
thumbnail
lock
Transformations
MATHEMATICS
Watch in App
Join BYJU'S Learning Program
CrossIcon