For n natural number variance is given by
σ2=∑x2in−(∑xin)2∑x2in=12+22+32+....n termn=n(n+1)(2n+1)6n
∑xin=1+2+3+....n termsn=n(n+1)2n
σ2=n2−112=10
⇒n=11
Variance of (2,4,6...)=4× variance of (1,2,3,4...)=4×m2−112=m2−13=16⇒m=7
Therefore, n + m = 11 + 7 = 18