If →a and →b are vectors such that |→a+→b|=√29 and →a×(2^i+3^j+4^k)=(2^i+3^j+4^k)×→b, then a possible value of (→a+→b).(−7^i+2^j+3^k) is
4
→a×→b=→a×→c⇒→a×→b−→a×→c=0⇒→a||→b−→c) or →b−→c=λ→aHere, →a×(2^i+3^j+4^k)=(2^i+3^j+4^k)×→b⇒ →a×(2^i+3^j+4^k)−(2^i+3^j+4^k)×→b=0⇒ (→a+→b)×(2^i+3^j+4^k)=0⇒ →a+→b=λ(2^i+3^j+4^k)Since, |→a+→b|=√29⇒ ±λ√4+9+16=√29⇒ λ=±1∴ →a+→b=±(2^i+3^j+4^k)Now, (→a+→b).(−7^i+2^j+3^k)=±(−14+6+12)=±4