The correct option is D α=±1,β=1
Since, →a,→b,→c are linearly dependent vectors.
⇒[→a →b →c]=0
⇒∣∣
∣∣1114341αβ∣∣
∣∣
Applying C2→C2−C1,C3→C3−C1,
∣∣
∣∣1004−101α−1β∣∣
∣∣=0⇒−(β−1)=0⇒β=1
Also, |→c|=√3 [given]
⇒1+α2+β2=3 [given,c=^i+α^j+β^k]
⇒1+α2+1=3⇒α2=1⇒α=±1