The correct option is A 1
[→a×→b,→b×→c,→c×→a]=(→a×→b).{(→b×→c)×(→c×→a)} (1)Let (→b×→c)=→p, then
(→b×→c)×(→c×→a)=→p×(→c×→a)=(→a.→p)→c−(→c.→p)→a [This identity for vector triple product]
Now, →a.→p=→a.(→b×→c)=[→a.→b.→c]→c.→p=→c(→b×→c)=[→c,→b,→c]=0
∴ (2) becomes
(→b×→c)×(→c×→a)=[→a.→b.→c]→c−0
∴ (1) becomes
(→a×→b).[→a.→b.→c]→c=[→a.→b.→c]→c{(→a×→b).→c}=[→a.→b.→c]2∴λ=1