If →a+→b+→c=0,∣∣→a∣∣=3,∣∣∣→b∣∣∣=5,∣∣→c∣∣=7, then the angle between →a&→b is
a+b+c=0 |a|=3,|b|=5,|c|=7
⇒→a+→b=−→c
⇒(a+b)(a+b)=(−→c)(−→c)
⇒a2+→a.→b+→b.→a+b−2=c2
⇒2a.bcosθ=c2−a2−b2
cosθ=c2−a2−b22ab
=49−9−252×3×5
=156×5
=12
∴θ=π3
Let the vectors and be such that and, then is a unit vector, if the angle between and is
(A) (B) (C) (D)