If →a,→b,→c, and →d, are the unit vectors such that (→a×→b).(→c×→d)=1 and →a.→c=12, then
→b,→d are non-parallel
Let angle between →a and →b be θ1, →c and →d be θ2 and →a×→b and →a×→b be θ.
Since, (→a×→b).(→c×→d)=1
⇒sin θ1.sin θ2.cos θ=1⇒θ1=90∘, θ2=90∘, θ=0∘⇒→a⊥→b, →c⊥→d,(→a×→b)||(→c×→d)So, →a×→b=k(→c×→d)⇒(→a×→b).→c=k(→c×→d).→dand (→a×→b).→d=k(→c×→d).→d⇒[→a→b→c]=0 and [→a→b→d]=0
⇒→a,→b, →c and →a,→b,→d are coplanar vectors, so options (a) and (b) are incorrect.
Let →b||→d ⇒→b=±→dAs (→a×→b).(→c×→d)=1⇒(→a×→b).(→c×→b)=±1⇒ [→a×→b→c→b]=±1⇒ [→c→b→a×→b]=±1⇒ →c.[→b×(→a×→b)]=±1⇒ →c.[→a−(→b.→a)→b]=±1⇒ →c.→a=±1 [∵ →a.→b=0]
Which is a contradiction, so option (c) is correct.
Let option (d) be correct.
⇒ →d=±→aand →c=±→bAs (→a×→b).(→c×→d)=±1(→a×→b).(→b×→a)=±1
which is a contradiction, so option (d) is incorrect. Alternatively, options (c) and (d) may be observed from the given figure.