If →a,→b,→c are three vectors and |→b|=|→c| then (→a+→b)×(→a+→c)}×(→b×→c).(→b+→c)=
A
2
No worries! We‘ve got your back. Try BYJU‘S free classes today!
B
−1
No worries! We‘ve got your back. Try BYJU‘S free classes today!
C
0
Right on! Give the BNAT exam to get a 100% scholarship for BYJUS courses
D
[→a→b→c]
No worries! We‘ve got your back. Try BYJU‘S free classes today!
Open in App
Solution
The correct option is D0 We have
{(¯¯¯a+¯¯b)×(¯¯¯a+¯¯c)}×(¯¯bׯ¯c).(¯¯b+¯¯c) ={(¯¯¯a+¯¯b)×(¯¯¯a+¯¯c)}.(¯¯c)¯¯b−{(¯¯¯a+¯¯b)×(¯¯¯a+¯¯c)}.(¯¯b)¯¯c ={¯¯¯aׯ¯c+¯¯bׯ¯¯a+¯¯bׯ¯c}.¯¯c¯¯b−{¯¯¯aׯ¯c+¯¯bׯ¯¯a+¯¯bׯ¯c}.¯¯b¯¯c ={(¯¯bׯ¯¯a).¯¯c}¯¯b−{(¯¯¯aׯ¯c.¯¯b)}¯¯c =[¯¯¯a¯¯c¯¯b](¯¯b−¯¯c) This vector is dot producted with (¯¯b+¯¯c). Hence the answer becomes 0, since |¯¯b|=|¯¯c|.