If →a,→b,→c are three vectors such that →a+→b+→c=→0, then prove that →a×→b=→b×→c=→c×→a, and hence show that [→a→b→c]=0.
Open in App
Solution
Given →a+→b+→c=→0⇒→a×→b=(−→b−→c)×→b=−→b×→b−→c×→b ⇒→a×→b=−→0+→b×→c⇒→a×→b=→b×→c...(i) That is →a×→b=(−→a−→c)×→c[∵→a+→b+→c=→0⇒→b=−→a−→c] ⇒→a×→b=−→a×→c−→c×→c⇒→a×→b=→c×→a−→0⇒→a×→b=→c×→a...(ii). By (i) and (ii), →a×→b=→b×→c=→c×→a. Now [→a→b→c]=(→a×→b).→c=(→b×→c).→c=[→b→c→c]=0. [By (i)]