If →a,→b,→c are unit vectors such that →a.→b=0,(→a−→b).(→b+→c)=0 and →c=λ→a+μ→b+ω(→a×→b), where λ,μ,ω are scalars then.
(μ+1)2+μ2+ω2=1
(¯a−¯b).(¯b−¯c)=0⇒¯a.¯b+¯c.(¯a−¯b)−|¯c|2=0
(¯a−¯b).¯c=1⇒(¯a−¯b).(λ→a+μ→b+ω(→a×→b))=1⇒λ−μ=1
λ=μ+1,¯a.¯b=0⇒¯a,¯b,¯aׯb are mutually perpendicular
|¯c|=1⇒λ2+μ2+ω2=1⇒(μ+1)2+μ2+ω2=1