Given,→a=xˆi+(x−1)ˆj+ˆk→b=(x+1)ˆi+ˆj+aˆkNow,ifwetakedot.dotform:→a.→b=(xˆi+(x−1)ˆj+ˆk).((x+1)ˆi+ˆj+aˆk)⇒x(x+1)+(x−1)+a⇒x2+2x+a−1conditiongiven,acuteangle:→a.→b>0∀x∈Rx2+2x+a−1>0∣∣
∣
∣∣ax2+bx+c>0D<0d=b2−4ac(b=2,a=1,c=a−1)⇒4−4(a−1)<0∴a>2So,wecansaythata>2andthisisthecorrectanswer.