The correct option is
D 8We know that
(→a×→b)×→c=(→a⋅→c)→b−(→b⋅→c)→a.Putting →c×→d=→e, we get
(→a×→b)×(→c×→d)=(→a×→b)×→e=(→a⋅→e)→b−(→b⋅→e)→a
={→a⋅(→c×→d)}→b−{→b⋅(→c×→d)}→a
=[→a →c →d]→b−[→b →c →d]→a ...(1)
Similarly,
(→a×→c)×(→d×→b)=[→a →d →b]→c−[→c →d →b]→a
=[→a →d →b]→c−[→b →c →d]→a ...(2)
Also,
(→a×→d)×(→b×→c)=−(→b×→c)×(→a×→d)
=(→b×→c)×(→d×→a)
=[→b →d →a]→c−[→c →d →a]→b
=−[→a →d →b]→c−[→a →c →d]→b ...(3)
From (1),(2) and (3), we get
−k→a=(→a×→b)×(→c×→d)+(→a×→c)×(→d×→b)+(→a×→d)×(→b×→c)
=[→a →c →d]→b−[→b →c →d]→a+[→a →d →b]→c−[→b →c →d]→a−[→a →d →b]→c−[→a →c →d]→b
=−2[→b →c →d]→a=−(2)(4)→a=−8→a=−k→a
⇒k=8.
Hence, option D.