If →q,→r are unit vectors such that →p=→q×→p+→r, then
A
→p.→q=→r.→q
Right on! Give the BNAT exam to get a 100% scholarship for BYJUS courses
B
maximum value of [→p→q→r]=12
Right on! Give the BNAT exam to get a 100% scholarship for BYJUS courses
C
minimum value of [→p→q→r]=0
Right on! Give the BNAT exam to get a 100% scholarship for BYJUS courses
D
minimum value of [→p→q→r]=−1
No worries! We‘ve got your back. Try BYJU‘S free classes today!
Open in App
Solution
The correct options are A→p.→q=→r.→q B maximum value of [→p→q→r]=12 C minimum value of [→p→q→r]=0 Take dot product with →q on both the sides →p.→q=→r.→q Hence, A is correct. We have, →p−→q×→p=→r - (i) We have, |→r|=|→q|=1 On squaring (i), we get p2+p2sin2θ=1 (θ is the angle between the vectors p and q) p2=11+sin2θ →p=→q×→p+→r Squaring p2=p2sin2θ+2[→q→p→r]+1 2[→p→q→r]=1−p2cos2θ=1−cos2θ(1+sin2θ) 2[→p→q→r]=1−(1−sin2θ)(1+sin2θ)=2sin2θ(1+sin2θ) 2[→p→q→r]=2(1−11+sin2θ) [→p→q→r]=1−1(1+sin2θ) When sin2θ=0⇒[→p→q→r]=0 When sin2θ=1⇒[→p→q→r]=12.