If →r×→b=→c×→b and →r.→a=0 where →a=2^i+3^j−^k,→b=3^i−^j+^k and →c=^i+^j+3^k, then →r is equal to
2(−^i+^j+^k)
We have, →r×→b=→c×→b⇒(→r−→c)×→b=0
⇒→r−→c is parallel to →b.
⇒→r=→c+λ→b, for some λ∈R
Now, →r.→a=0
⇒(→c+λ→b).→a=0⇒(→c.→a)+λ(→b.→a)=0⇒(2+3−3)+λ(6−3−1)=0⇒λ=−1.