If →r×→b=→c×→b&→r,→a=0 where
→a=2∧i+3∧j−∧k,→b=3∧i−∧j−k,→c=∧i+∧j+∧k then →r
→r×→b=→a×→b;→r×→a=0,
Letr=xˆi+yˆj+zˆk
so ∣∣ ∣ ∣∣ˆiˆjkxyz3−1−1∣∣ ∣ ∣∣=∣∣ ∣ ∣∣ˆiˆjk1113−1−1∣∣ ∣ ∣∣
⇒ˆi(−y+z)−ˆj(−x−3z)+ˆk(−x−3y)=ˆi(0)−ˆj(−4)+ˆk(−4)
Comparing,weget
- y + z = 0⇒y = z
&−x−3y=−4or−x−3z=−4orx+3y=4...........(1)
Also→r.→a=0
(xˆi+yˆj+zˆk).(xˆi+yˆj+zˆk)=0
2x+3y−z=0
x+3y−y=0 (asy=z)
2x=−2y
x=−y
put in ........(1)
2y = 4
Y = 2
∴ X= - 2
Z=2
→r=−2ˆi+2ˆj+2ˆk=2(−ˆi+ˆj+ˆk)