If →u=→a−→b and →v=→a+→b and |→a|=|→b|=2, then |→u×→v|=
2√16−(→a.→b)2
√16−(→a.→b)2
2√4−(→a.→b)2
√4−(→a.→b)2
|→u×→v|=|(→a−→b)×(→a+→b)|=|2→a×→b|=2 |→a||→b| sin θ=8 sin θ=8√1−cos2 θ=8√1−(→a.→b4)2 (∵→a.→b=4 cos θ)=2√16−(→a.→b)2
If |u|<1,|v|<1, and z=u−v1+¯uv, then least value of |z| is