If a→=2i^+j^+2k^ , then the value of i^×(a→×i^)2+j^×(a→×j^)2+k^×(a→×k^)2is equal to
Solution:
On simplifying the vectors, we get,
|i^×(a→×i^)|2=a→–(a.i^)i^2=j^+2k^2=1+4=5
Similarly,
j^×(a→×j^)2=2i^+2k^2=4+4=8
Again,
k^×(a→×k)^2=2i^+j^2=4+1=5
On addition of these three equations, we get,
i^×(a→×i^)2+j^×(a→×j^)2+k^×(a→×k^)2=5+8+5=18
Hence, the required answer is 18.