If a→=αi^+βj^+3k,b⇀=–βi^–αj^–k, c→=i^-2j^ such that a→.b→=1 and b.→c→=-3then 13((a→×b→).c→) is equal to
Finding the value of the expression:
Step : Finding the value of a→×b→:
Given,
a→=(α,β,3),b→=(-β,−α,−1),c→=(1,−2,−1),
a→·b→=1⇒(-αβ-αβ-3)=1⇒-2αβ=4⇒αβ=-2...1
b→.c→=-3⇒(-β+2α+1)=-3⇒2α-β=-4...2
Solving the equations1 and 2, we get
α=-1β=2
So, vector a→=(-1,2,3) and b→=(-2,1,-1)
a→×b→=i^j^k^-123-21-1=i^(-5)-j^(7)+k(3)=(-5,-7,3)
Furthermore,
(a→×b→).c→=(-5,-7,3).(1,−2,−1)=−5+14−3=6
13((a→xb→).c→)=2
Hence, the required answer is 2.