If a,→b→,c→ are three mutually perpendicular vectors equally inclined to a→+b→+c→ at angle θ then find the value of 36cos22θ.
Finding the value of 36cos22θ:
Since the vectors are mutually perpendicular,
a→.b→=b→.c→=c→.a→=0
(a→+b→+c→).(a→+b→+c→)=a→+b→+c→2⇒a→2+|b|→2+c→2=a→+b→+c→2…(1)⇒a→.(a→+b→+c→)=|a→||a→+b→+c→|cosθ⇒a→2=|a→||a→+b→+c→|cosθ⇒|a→|=|a→+b→+c→|cosθ
In the same manner,
b→=a→+b→+c→cosθ|c→|=a→+b→+c→cosθ⇒a→=b→=c→
From equation 1, we get
3|a→|2=|a→+b→+c→|2⇒3a→+b→+c→2cos2θ=|a→+b→+c→|2⇒cos2θ=13⇒1+cos2θ=2cos2θ⇒36cos22θ=36(2×1/3-1)2⇒=369⇒=4
Hence, the required answer is 4.