wiz-icon
MyQuestionIcon
MyQuestionIcon
1
You visited us 1 times! Enjoying our articles? Unlock Full Access!
Question

If vectors A and B satisfying the vector equation A+B=a,A×B=b and Aa=1, where a and b are given vectors, then which of the following is/are true

A
A=(a×b)a|a|2
No worries! We‘ve got your back. Try BYJU‘S free classes today!
B
B=(b×a)+a(|a|21)|a|2
Right on! Give the BNAT exam to get a 100% scholarship for BYJUS courses
C
A=(a×b)+a|a|2
Right on! Give the BNAT exam to get a 100% scholarship for BYJUS courses
D
B=(b×a)a(|a|21)|a|2
No worries! We‘ve got your back. Try BYJU‘S free classes today!
Open in App
Solution

The correct option is C A=(a×b)+a|a|2
We have A+B=a
Taking dot product of a both sides, we get
Aa+Ba=aa
1+Ba=|a|2
(Aa=1)
Ba=|a|21 (i)
Also A×B=b
Taking cross product of a both sides, we get
a×(A×B)=a×b
(aB)A(aA)B=a×b
(|a|21)AB=a×b (ii) (using (i) and aA=1)

Put B=aA in (ii), we get
A=(a×b)+a|a|2 B=a(a×b)+a|a|2=(b×a)+a(|a|21)|a|2

flag
Suggest Corrections
thumbs-up
0
Join BYJU'S Learning Program
similar_icon
Related Videos
thumbnail
lock
Vector Intuition
PHYSICS
Watch in App
Join BYJU'S Learning Program
CrossIcon