The orthocenter is the intersection of altitudes of a
△ABCNow, let the point O(0,0) equidistance from A,B and C
OA=√(3−0)2+(4−0)2=√9+16=√25(=5
OB=√(5sint−0)2+(5cost−0)2=√25cos2t+25sin2t=√25(1)=5
OC=√(5cost−0)2+(5cossint−0)2=√25cos2t+25sin2t=√25(1)=5
So, we can say O(0,0) is circumcentre of △ABC
Now, let H(h,k) be the orthocentre of △ABC,△G is centroid
G=(3+5sint+5cost3,4+5cost−5sint3)....(1)
G divides H and O in ratio 2:1
Coordinate of G=(h3,k3)....(2)
Comparing (1) and (2), we get
h=3+5sint+5cost and k=4+5cost−5sint
⇒(h−3)=5sint+5cost and (k−4)=5cost−5sint.