If w=α+iβ,where β≠0 and z≠1, satisfies the condition that (w−¯wz1−z) is purely real, then the set of values of z is
|z|=1, and z≠1
Let z1=w−¯wz1−z be purely real⇒z1=¯z1∴w−¯wz1−z=¯w−w¯z1−¯z⇒w−w¯z−¯wz+¯wz.¯z=¯w−z¯w−w¯z+wz.¯z⇒(w−¯w)+(¯w−w)|z|2=0⇒(w−¯w)(1−|z|2)=0⇒|z|2=1 [as w−¯w≠0, since β≠0]⇒|z|=1 and z≠1