The correct option is A −2xy+yx2+y2+C
w=φ+iΨ Complex Potential and Ψ=x2−y2+xx2+y2
Using Milne Thomson method.
Step 1: ∂Ψ∂x=2x+y2−x2(x2+y2)2≈ψ2(x,y) (let)
Step 2: ψ2(z,0)=2z−1z2
Step 3: ∂Ψ∂x=−2y+−2xy(x2+y2)2≈ψ1(x,y) (let)
Step 4: ψ1(z,0)=0
Step 5: w=∫[ϕ1(z,0)+ϕ2(z,0)]dz+C
=∫[0+i(2z−1z2)dz]+C
=i(z2−1z)+C
=i(x2−y2=2ixy+1x+iy)+C
=(−2xy+yx2+y2+C)+i(x2−y2+xx2+y2)
w=ϕ+iΨ
Ψ=−2xy+yx2+y2+C